BOB半岛官网废水处理常用方法十篇我国平均每年河水排放量约349亿立方米,工业废水排放量逐年增加,浪费水资源的同时加剧了水源的污染,所以工业废水的处理与回收势在必行。目前我国很多城市水资源短缺情况严重,一定程度上制约了我国经济和社会的发展。工业废水的处理和回收已经引起了人们的高度重视。
我国是一个淡水资源严重短缺和供需矛盾突出的国家,加强工业废水的净化处理是节约水源,减少污染然和维持社会可持续发展的重要手段。以下简单介绍工业废水的处理和回收方法BOB半岛官网。
利用物理法去除废水中的污染物是比较常见的方法,目前常用的方法主要有重力分离法(适用于杂质密度较大的废水)、浮力分离法(适用于分离亲水性不同的杂质)、体积分离法(适用于分离体积较大的杂质)等,这些方法不改变废水的化学性质,把废水中的不同物质成分以特定的方法改变其存在形式和分布领域。利用物理原理,分离废水中的有害物质、调节水质、减少水资源的污染。
与物理法处理工业废水有所不同,化学法利用的是化学反应去除水中污染物,不仅改变了杂质的物理性质,还改变了杂质的化学性质,对污染的根源做进一步处理。较为常用的化学法为氧化还原法(将有毒物质转化为无毒)和电解法(分解重金属离子)BOB半岛。
物理化学法是物理作用与化学作用的综合,其废水处理效果非常明显。常用的物理化学法有电解法和离子交换法,对废水中的重金属离子进行回收,净化水质。但是由于其处理费用较高,目前尚未获得全面的推广使用。
生物法处理工业废水是一项很有发展前景的技术,生物处理方法是工业废水处理的发展趋势,它是利用微生物的生命活动来转化废水中的污染物,对生物成分进行改造和利用,生物技术还用于污水的二级处理或深度处理。生物技术与其他技术相比,净化过程简单,工艺流程和运行容易掌控。
工业废水的二级处理是节约水源的有效方法,工业废水通过土地的净化和大自然的水循环系统重复利用。利用生物技术(土地回用技术),把工业废水用于农业土地灌溉,使土地成为一个生化处理池,实现工业废水的循环利用。值得注意的是,土地回用技术所回收的工业废水不能含有有毒物质。
膜技术采用混凝砂滤、活性炭和反渗透工艺处理工业废水。反渗透工艺去除的杂质主要是无机盐、残余有机杂质,达到循环利用的目的,反渗透工艺中,压力的大小和处理方法的选择非常关键。反渗透工艺利用醋酸纤维素膜和芳香聚酰胺膜作为半透膜。此外,电渗析技术也是比较常用的膜技术,适用于发酵、造纸工业废水中酸碱的回收和脱盐处理。
我国工业废水的净化处理和回收技术虽然取得了一定进展,但是仍然存在在许多问题,亟待解决。很多企业只是对废水进行常规的处理,达到排放标准后直接排放,没有回收利用,达标的废水中非重金属离子和可溶解性盐类的杂质较高,对它们的二次利用非常有限。
我国工业废水中的污染物种类越来越复杂,在废水处理过程中存在很大困难。通常将废水分为含氟废水、含铬废水和综合废水,这种分类存在许多不合理性,如重金属不能有效回收,不同的污染物性质不同,没有针对性的治理措施会导致额外的药剂消耗,增加处理费用。
利用化学沉淀法处理工业废水时,由于废水中重金属含量大,如果不经过回收处理而直接加碱沉淀,则需加入大量的碱中和废水中的酸,并使金属沉淀;而且很多企业废水处理过工程由人工操作,不能准确的控制药剂的添加量,所以经常出现减的使用量过大情况,浪费药剂。
受工业废水处理技术的限制,国内企业的污水处理成本普遍较高。为了满足环保要求,废水达标排放,企业投入大量资金、人力和物力,许多企业废水处理工艺不合理,浪费药剂,工作效率不高。虽然废水处理存在经济效益,但是高成本的资金投入使得经济效益并不乐观,企业也就没有了处理污水的动力。所以企业要加强改进污水处理工艺,做到分开治理、分类回收、严格工艺。
工业废水的处理应做到分流收集、分质处理,根据污水的水质特点进行分类,在对不同类别的水质采取不同的处理工艺,例如对废水中的金、银、镍等贵重的重金属采用单独处理,回收再利用,降低重金属超标的可能性,又为企业创造价值。
提高企业废水处理的自动化水平,不仅能够节省劳动力、提高效率,还能减少人为操作导致的问题,确保工艺参数稳定、实现高水平、高效率的污水处理。废水处理站的加药及控制系统可采用仪表自动化控制,设定好系统中各仪表的参数,实现电脑操控。
工业废水中的废酸要单独处理并回收,通过添加一定量的酸活化剂,过滤掉废酸中的重金属和油污,则酸可以实现二次利用。这样不仅减少了碱的使用量,还节省了新酸的用量,从而节省了处理费用。
污水的处理方法多种多样,企业要有针对性地根据水质特点采取有效的治理措施,目前常用的方法有吸附法、反渗透法、离子交换法、电絮凝法、超滤等,对于有机工业废水,生化技术是未来污水处理的发展趋势,不仅能够降低有机物含量,节省费用,还能满足废水排放标准。
在水资源日益匮乏的今天BOB半岛官网,节约用水和废水重新利用与寻找新水源同等重要,企业必须根据自身的实际情况加强对工业废水的处理,对存在的问题进行分析并提出解决措施;采取行之有效的策略和对策,加强技术创新和改革,将更多的技术应用在工业废水处理水的回用上,降低废水处理成本,达到环境效益与经济效益的双赢。
[1] 胡洪营,赵文玉,吴乾元.工业废水污染治理途径与技术研究发展需求[J].环境科学研究,2010(7):15-17.
随着工业化进程的加快,废水的种类和数量迅速增加,已成为威胁人类健康和安全的重大隐患。如何做好废水处理,维持工业的可持续发展,已成为当下的重要课题。
由于各个企业的规模不同、生产工业流程不同,所产生的废水的成分比较复杂。企业废水一般可分为三种。
第一种,根据废水中所含的主要污染物的化学性质进行分类,一般可分为无机废水和有机废水两个类别;如矿物加工过程的废水和电镀废水,属无机废水;食品和石油加工过程的废水,属有机废水。第二种,依据企业的产品和加工对象进行分类;如造纸废水、冶金废水、纺织印染废水、染料废水、制革废水、金属酸洗废水、农药废水、电站废水等。第三种,以废水中含有的污染物的主要成分为进行分类,如酸性废水、碱性废水、含铬废水、含氰废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。
2. 废水处理的基本原则 2.1优先选用无毒生产工艺代替或改革落后的生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水的产生。 2.2在使用有毒原料以及产生有毒中间产物和产品的过程中,应严格操作、监督,消除滴漏,减少流失,尽可能采用合理的流程和设备。 2.3含有剧毒物质的废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与废水分流,以便处理和回收有用物质。 2.4流量较大而污染较轻的废水,应处理后循环使用,不应排入下水道,以免增加城市下水道和城市污水处理负荷。 2.5类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理,处理后回用。 2.6一些可以生物降解的有毒废水,如酚、氰废水,应处理后按排放标准排入城市下水道,再进一步生化处理。[1]2.7含有难以进行生物降解的有毒废水,应单独处理,不应排入城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。
零件在被磨光、抛光时,因磨料和抛光剂等的存在,致使COD、BOD、SS等污染物存在于废水中。一般可按照如下工艺流程:废水调节池混凝反应池沉淀池水解酸化池好氧池二沉池过滤排放,进行废水处理。
大多数的脱脂工业中因脱脂剂的存在,而使废水中的污染物以pH、SS、COD、BOD、色度、石油类等为主。常常采取以下工艺流程进行处理:废水隔油池调节池气浮设备厌氧或水解酸化好氧生化沉淀过滤或吸附排放。
因该类废水中多含有乳化油,在进行气浮前要加入一定量的CaCl2破乳剂,便于破除乳化油。对于废水中含有的高浓度污染物COD,最好采用厌氧生化技术加以处理。[2]
在进行钢铁零件的酸洗除锈过程中很容易产生酸洗废水,该废水中的Fe2+以及SS的浓度都比较高。一般采用以下工艺流程进行处理:废水调节池中和池曝气氧化池混凝反应池沉淀池过滤池pH回调池排放 。
磷化废水也称之为皮膜废水,即铁件在磷酸盐溶液中经过化学处理后,表面生成一层磷酸盐保护膜,该保护膜因难溶于水,常用作喷涂底层,以防铁件生锈。该类废水中主要以pH、SS、以及COD等为主。
因电镀生产工艺多种多样,且工艺各不相同,所产生的废水也不会相同。所以必须采用不同的处理方法进行治理。
目前多采用碱性氯化法处理含氰废水,该方法的工作原理是在碱性条件下,通过采用氯系氧化剂来破除废水中的氰化物。处理过程中,必须做好含氰废水与废水的分流工作。
处理过程可按两步走,第一步称之为不完全氧化阶段,即将氰氧化为氰酸盐,这时还不能彻底破坏氰;第二步称为完全氧化阶段,也就是将氰酸盐进一步的氧化分解生成二氧化碳和水。将经过处理的含氰废水与电镀综合废水进行混合一起处理。
铬还原法是进行含六价铬废水处理的常见方法,其工作原理:使含六价铬废水处于酸性环境下,通过加入一定的还原剂将六价铬还原成三价铬,然后加入氢氧化钙、氢氧化钠以及石灰等对pH值进行调节,使所生成的三价铬氢氧化物经过沉淀而除去。[3]
综合重金属废水包括酸、碱前处理废水以及含有铜、镍、锌的重金属废水。一般采用氢氧化物沉淀法对废水进行处理。
生产线路板的企业废水主要产生于对线路板进行磨板、蚀刻、电镀、脱膜等的工序过程中。以下对线路板废水的处理方法,分别进行介绍:
一般多采用硫化法进行该类废水的处理,其原理是通过硫化物中的S2ˉ与铜氨络合离子中的Cu2+的结合生成CuS沉淀,将废水中的铜除去,对于过量的S2ˉ宜选用铁盐使其生成FeS沉淀而分离。
由于油墨废水水量较小,常采用间歇处理,其原理是在酸性条件下,利用有机油墨从废水中分离出来的悬浮物的性质而除去,处理后的油墨废水可混入综合废水中一起进行处理。如油墨废水水量较大时宜采用生化法单独处理。[4]
该类废水中不仅包含Cu2+、Sn2+、Pb2+等重金属,还含有酸碱前处理废水。一般采用氢氧化物混凝沉淀法进行处理。
对多种线路板废水进行处理时,应将络合含铜废水、油墨废水以及综合重金属废水进行分流,油墨废水经过预处理后,将其与综合废水混合一起进行处理,对于铜氨络合废水则应单独处理,然后由综合废水处理系统对其进行处理。
上述第三小节主要对企业废水的类别、废水处理的基本原则以及几种典型废水处理技术进行了分析阐述。为了更好的对企业废水进行处理,本小节将主要对企业废水几种常用的处理方法进行分析阐述。
用化学法去除废水中过量的酸或碱,使其pH值达到中性的过程称为中和。处理含酸废水时,以碱或碱性氧化物为中和剂,而处理碱性废水则以酸或酸性氧化物做中和剂。对于中和处理,首先考虑以废治废的原则,将酸性废水与碱性废水互相中和,或者利用废碱渣(碳酸钙碱渣、电石渣等)中和酸性废水,条件不具备时,才使用中和剂处理。酸性废水中和处理经常采用的中和剂有石灰、石灰石、白云石、氢氧化钠、碳酸钠等,碱性废水中和处理一般采用硫酸、盐酸。 当酸碱废水的流量和浓度变化较大时,应该先进入水质均质调节池进行均化,均化后的酸碱废水再进人中和池。为使酸碱中和反应进行得较完全,中和池内要设搅拌器进行混合搅拌BOB半岛官网。当水质水量较稳定或后续处理对pH值要求较宽时,可直接在集水槽、管道或混合槽中进行中和。
化学沉淀法向废水中投加可溶性化学药剂,使之与废水中呈离子状态的无机污染物起化学反应,生成不溶于或难溶于水的化合物,沉淀析出,从而使废水得到净化的方法。化学沉淀法是一种传统的水处理方法,广泛用于水质处理中的软化过程,也常用于工业废水处理,去除重金属及氰化物等。 用化学沉淀法处理废水的前提是:污染物在反应中能生成难溶于水的沉淀物。沉淀物形成的唯一条件是它在水中溶解的离子积大于溶度积。投入废水中的化学药剂称沉淀剂,常用的沉淀剂有石灰、硫化物和钡盐等。根据沉淀剂的不同,化学沉淀法可分为氢化物沉淀法、硫化物沉淀法和钡盐沉淀法等。
反渗透法也是一种处理企业废水的常用方法。由于反渗透膜的孔径仅万分之一微米,各种病毒、细菌、重金属离子等无法通过逆渗透膜,只有分子和溶解的氧能通过,从而达到水质净化的目的。通过采用能够承受高压的物质作为渗透薄膜,废水在经过这种薄膜的过程当中,可以允许水分子通过,但是阻止有害物质通过,这样就达到了将纯净水与有害物质分离的目的。
上述主要对企业废水处理过程中常用的三种方法进行了分析阐述。上述三种方法适合的情况有所不同。在选用处理方法的过程当中,一定要根据废水的实际情况以及处理目的来选择合适的处理方法。
在水和其他资源日渐短缺以及环境污染治理日益迫切的情况下,企业废水对水体和环境的污染日趋严重,迫切需要污染治理。企业做好废水处理具有重要的现实意义,需要社会各界的共同努力,为节能与环境保护做出更大的贡献。
[1]楚君,王坤丽,吴健.发制品企业废水处理工程设计实例[J].工业用水与废水,2008,(4):58—61.
[2]孙爱华,夏冬,杨蕴敏.常州地区印染企业废水处理的思考[J].国外丝绸,2009,(2):87—89.
化工生产中产生的化工废水水质成分比较复杂,副产物较多,由于反应原料通常为溶剂类物质或环状结构的化合物,大大增加了废水的处理难度。由于原料反应不完全和生产中使用的大量溶剂介质进入了废水体系,废水中污染物含量高。另外,化工废水中的有毒有害物质较多,如卤素化合物、硝基化合物等。
从使用技术、措施原理和作用对象等几个方面上看,化工生产中产生的废水处理方法可以分为物理、化学、生物三类处理法。
顾名思义,就是进行废水处理时,使用物理的方法,这样做的主要目的是把废水中存在的不溶性悬浮颗粒物分离去除出去。在使用物理处理法时,可以使用格栅和筛网去除细小悬浮物,还可以用沉淀的方式去除废水中的无机砂粒、比水重的悬浮有机物等,还可以用气浮的方式来分离密度和水接近或者比水小的细微颗粒。
化学处理法是一种常见的处理方法。它主要是指对酸碱废水、重金属废水的处理。酸碱废水的处理包括对酸性废水的处理和碱性废水的处理。其中,酸性废水处理包括投药中和法、天然水体以及土壤的碱度中和法等几种方法。碱性废水处理包括投酸中和法、酸性废水以及废气中和法。
生物处理法应用比较广泛,它的原理是利用微生物把有机物进行氧化、分解,使其成为稳定无机物的原理。生物处理法具体包括好氧生物、厌氧生物、自然生物处理法三种形式。
膜分离法在废水处理过程中的具有一定的优势,用这种方法处理时不引入其他杂质,能够实现大分子和小分子物质的分离,因此,在大分子原料回收过程中常常被使用。目前,膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。然而,膜造价高、寿命短、易受污染和结垢堵塞,所以该技术工程在应用推广时有难度。相信随着膜生产技术的发展,膜技术将应用的越来越广泛。
作为处理有毒难生物降解污染物的新型有效技术,电催化高级氧化法因其具有处理效率高、操作简便、与环境兼容等优点,引起了研究者的注意。其工作原理是在常温常压下,通过有催化活性的电极反应,直接或间接产生羟基自由基,从而使难生物降解的有机物转化为可生物降解的有机物,或使难生物降解的有机物“燃烧”而生成二氧化碳和水。虽然该方法优势明显,但受电极材料限制,该工艺降解有机物时能耗高,很难实现工业化。
作为强氧化剂的臭氧能与废水中大多数有机物、微生物迅速产生化学反应,除去废水中的酚、氰等污染物,同时还能起到脱色、除臭、杀菌的作用。而且,臭氧在水中很快就分解为氧,不会造成二次污染,操作起来也十分方便。这种方法的确点就是投资高、电耗大、处理成本高。如果操作不当,还会对周围生物造成危害。因此,这种方法还仅仅在废水的深度处理方面应用。
废水中经常会存在非磁性或弱磁性的颗粒,近年来发展的磁分离技术就可以派上用场。磁分离技术主要有直接磁分离法、间接磁分离法和微生物―磁分离法。目前研究的磁性化技术,主要包括磁性团聚技术、铁盐共沉技术、铁粉法、铁氧体法等,不过,磁分离技术目前还处在实验室研究阶段,工程实践中未能广泛应用。
铁炭微电解法又称内电解法、铁屑过滤法,它利用Fe/C原电池反应原理对废水进行处理。这种处理技术是电化学的氧化还原、电化学电对对絮体的电富集作用、以及电化学反应产物的凝聚、新生絮体的吸附和床层过滤等作用的综合效应,其中主要是氧化还原和电附集及凝聚作用。
该技术优点颇多,如适用范围广、处理效果好、使用寿命长、成本低廉以及操作维护方便等,而且该技术使用废铁屑做为原料,也不消耗电力资源。目前,该技术已经广泛应用于印染、制药、重金属、石油化工等废水处理中,均取得了良好的效果。
该技术是生物工程领域中的新技术,从上世纪80年代起,这项技术开始应用于处理有毒难降解的工业废水,取得了显著的效果。
与常规生物方法处理中出现的难降解有机废水等现象,固定化微生物技术利用褐藻酸钙等天然凝胶及聚丙烯酰胺、聚乙烯醇等高分子材料作为载体,有目的地筛选一些特殊的优势菌种,将其固定在载体上。该技术将细胞固定后,提高了反应器内微生物数量,从而提高了处理效率,同时可使反应器小型化,易于固液分离,是很有潜力的技术。该技术在废水处理中的应用取得了相当大的进展,今后,进一步开发新型性能优良的固定化载体,使这项技术尽快实现实用化和工业化。
该方法是将高浓度的焦化废水脱酚,净化除去固体沉淀和轻质焦油后,送往焦炉熄焦,实现酚水闭路循环。通过这种方式,减少了排污,降低了运行等费用。
随着化工行业的发展,企业产生的废水量日益增多,废水的成分也越来越复杂。将这些废水处理好,既保护了环境,同时也有益于化工行业健康的发展。这就要求处理工艺的设计者,不能从简单地套用别人的工艺和设备,而是应该根据自身情况,有针对性地设计实施切实有效的处理方案,对症下药,对号入座。
目前,我国对化工废水处理工艺的研究取得了一定的进展,有些技术处在试验阶段,试验成功后,即将其运用到实际的工作中。但是,我们不能满足于现状,相关人员应当意识到,我们的废水处理技术仍然存在诸多问题,应当不断钻研技术,把我国化工生产中的废水处理技术提高到一个新层次、新高度。
[2]杨元林,周云巍高浓度焦化废水处理工艺探讨[J]. 机械管理开发,2001,(4):23-25.
[3]赵苏,杨合,孙晓巍 高级氧化技术机理及在水处理中的应用进展[J]. 能源环境保护,2004,(03) :106-107.
合理的利用水资源,改善城市的投资环境,已是可持续发展战略的重要思想。但在一些小城市的工业发展进程中半岛BOB,工业废水的排放难免会对水质的环境带来一些影响。而随着工业废水的大量排放,小城市的污、废水排放的比例也发生了很大的变化,当面对难以降解的物质时,就要考虑选用非常规的污水处理工艺,来促进城市污、废水处理的质量。
小城市中的污水通常以生活污水为主,但由于经济的发展,小城市的工业用水也得到了不断地增加,造成了大量的污水排放,使得污、废水量比形成了严重的失调现象。位于太湖以南的浙江,包含有钱塘江等比较大的水系,所以水体的功能一般要求达到Ⅲ类水以上。然而由于乡镇企业的迅速发展,使得工业的废水量远远超过了生活的废水量。在我国大多数的小城市中,雨、污水分流是排水体制的一个重要目标,但在近年来,截污率已经达到了0.55-0.65,而一些中型的工业地带的废水截污率则已经达到了100%,所以,污、废水的比例也有所降低。在实际的污、废水的设计中,可以对工程投资、处理工艺、进、出水质进行综合的确定,来进行污、废水的有效处理。
与污水厂的进水水质要素相关的有:1.污、废比;2.工业废水污染物成份;3.居民生活用水量;4.地下管道入渗率;5.城市管网排水体制。通常来讲,就小城市的污水水质而言,北方城市不如南方城市,但居民的生活水平、气象环境、雨、污分流比例都会对小城市的实际水质造成一定的影响。下表是小城市污水中低浓度水质示例表。
对城市的污水处理厂而言,威胁运行较大的是工业废水的水质,如印染厂、医药化工厂、造纸厂等工业废水。如果污、废比较小时,即促使废水的处理,使之达到进污水管网的标准要求,会从本质上解决小城市的污水水质。下图是污水排入城市下水道的水质标准要求表。
在常规的污水处理中,污、废水比达到75%以上,才能达到出水的标准,即COD≤60mg/L。但如果不能达到这一比值时,就要应用非常规的污水处理方法进行污废水的处理。与此同时,在污废水的常规处理中,一般要求出水浓度要达到工业废水的排放标准,其与城市污水厂的出水要求有着比较大的区别。为此,在确定非常规的处理方法中,要对常规处理方法中的除磷脱氮功能进行一定的保留,并具备降解残余物质的能力。
对于生活污水而言,由于工业废水的渗入,使得水质的特性发生率很大的变化,由于这一特点,进入污水管网的工业废水的水质特性也发生了很大的变化。其两者具有相辅相成的重要作用。对出水水质来讲,处理的工艺对其有着重要的影响,污、废水的性质对其也有着一定的影响。如果说,某一个城市的工业废水主要是造纸、印染等,所采用的处理方法就是常规的污水处理工艺,它的入管BOD有75%的去除率,生活污水BOD和COD有95%和90%的去除率。在这一过程中,用化学除磷的工艺也是非常重要的,通过这一方法,就可以得知污、废比条件下的出水水质,如下表。
从上表可以看出,如果污/废比处于0.60/0.35时,若进行常规的方法进行污水的处理,能够使出水达到城镇的排放标准;但当这一比值超过0.45/0.55,时,只会让出水水质达到城镇的二级排放标准。为此,当这一比值低过以上的标准时,就要采取非常规的方法,进行小城市的污水处理。对于非常规的污水处理工艺而言,其可对工业废水的成分和污、废比进行一定的依据,在参照一下一些工艺的流程进行废水的处理。
在上面的这些污水处理额非常规处理工艺中,对于调节池的设置,其主要考虑的是工业废水的排放量和污、废比。如果污、废比的比值小于0.35/0.65,或出现反应池单元,就必须要进行调节池的设置,才能对处理过程中的药剂投放量进行有效地控制。而对于水解池而言,它的设置考虑的是废水中BOD/COD之比和入管中的难降解物质的浓度,其对制革、毛纺、造纸、水果罐头食品、印染等废水的处理均可适用。其中在设置初沉池时,一般要对进水的悬浮物浓度进行有效地取舍,如果具备混凝沉淀的功能,也要对其进行设置。此外,如果出现不溶性COD和难降解物质的存在,并在BOD/COD比值较低时,就要对反应池进行设置,在依据入管工业废水的特性,可选择性的添加氧化剂或混凝剂。通常来说,如果是制革和医药化工类的废水,就可对其进行上述工艺的选用。
(一)处理小城市污水时,入管难降解物质和工业废水比例的增多会使废水的处理难以达到合理的标准,一般来说,运用常规的污水处理方法,并不能够达到很好的效果,以此实现水环境质量的改善。为此,就要对处理难降解工业废水的方法进行有效地兼纳,不断地完善常规的生化处理工艺,来适应经济的需求和发展。
(二)对污水处理的非常规的处理工艺进行一定的完善,并能够依据出水浓度、入管废水的性质、污废比等内容进行工艺的设计,而对这些内容进行有效地考虑,也能够对小城市污水处理的工艺设计进行一个可行性的判别,使应该使用非常规处理工艺却运用常规处理工艺的现象有所避免,有效地保障出水的合格率BOB半岛官网。
缺水已经成为影响我国经济发展、社会安定和环境改善的主要制约因素之一。因此,废水回用和综合利用是解决环境废染及水资源短缺的有效途径和必要手段,从而保证经济的进一步可持续发展。对于缺水城市而言,城市废水和工业废水再生利用比开发建设新水源更为重要,更符合我国贫水的客观事实,更具有深远与现实意义。
随着人类社会的发展,人们已经认识到,水不是取之不尽用之不竭的,水是有限的,而这有限的水,正遭到严重废染,这就使本来就十分匾乏的水资源更加匾乏。一方面严重缺水,另一方面又有大量废水排出,流人江河湖海废染水体。废水处理既可解决水源的严重废染,又可开发新水源,应该说这是一项事半功倍的事业。然而由于认识、体制、资金、技术的问题,废水处理迟迟不能迅速发展。
按废水来源分类,废水一般分为生产废水处理和生活废水处理。生产废水包括工业废水、农业废水以及医疗废水等,而生活废水就是日常生活产生的废水。工业废水成分复杂,排量变化大,其性质与排量取决于工业生产的性质、工艺和规模等,不同的工业企业所排放的废水在质和量上各异。如化工、石油、造纸、纺织、印刷、食品等工业排放的废水主要含大量的有机物和其他有害物质。生活废水包括城市居民住宅排水、公共设施排水和工厂生活设施排水。生活废水中有机物含量较高,主要是由动植物蛋白、脂肪、洗涤剂、粪便、生活杂物等有机成分组成,其中含有许多细菌、病毒、微生物等。
废水处理被广泛应用于建筑、交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。 现代废水处理技术,按处理程度划分,可分为一级、二级和处理。
一级处理,主要去除废水中呈悬浮状态的固体废染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的废水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,主要去除废水中呈胶体和溶解状态的有机废染物质(BOD,COD物质),去除率可达90%以上,使有机废染物达到排放标准。
处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
目前常用的废水处理技术有:物理法、化学法、物理化学法、生物法等,但是单纯用某一种方法处理废水,往往不能达标排放,它往往需要多种方法联合使用才能达到处理效果。
常用的物理方法有:气浮法、重力沉淀法、过滤法、蒸馏法等。气浮法、重力沉淀法、过滤法是指利用物理作用,分离废水中呈悬浮状态的废染物质,去除对象是水中悬浮物质。应用的工艺有筛滤截留、重力分离、离心分离。常用的处理设备有格栅、沉淀池、过滤池、气浮装置等。
化学法是按废水中废染物的主要类型,向废水中加入某些化学物质,通过化学反应,以达到净化水质目的的技术方法。现阶段化学法主要有:混凝法、中和法、铁屑内电解法、化学氧化法、电化学氧化法、焚烧法等。
混凝法是向水中投加一定量的混凝剂,经过脱稳、架桥等反应过程使水中呈胶体状态,难以沉降的颗粒互相聚集增大,形成粗絮体的方法,再经过沉淀或气浮,使废染物分离出来。常用混凝剂可分为无机混凝剂和有机混凝剂两类。潘碌亭、肖锦、赵建夫等以硫酸铝为主要原料制得兼具氧化和絮凝为一体的新型、高效水处理药剂COF-I,对微废染水源水、城市废水及印染废水进行了强化处理试验研究,结果表明,复合药剂COF-I对微废染水源水、城市废水及印染废水均具有良好的处理效果。最近的研究表明,有机高分子絮凝剂特别是人工合成的有机絮凝剂对染料废水有更好的脱色效果。混凝法的优点是工程投资少,处理量大,对疏水性染料脱色效率很高;缺点是需随水质变化而改变投料条件,对亲水性染料的脱色效率低,大量的泥渣脱水困难。
中和法是用化学法去除废水中过量的酸或碱,使其pH值达到中性左右的过程称为中和。处理含酸废水时通常以碱和碱性氧化物为中和剂,而处理碱性废水则以酸或酸性氧化物作中和剂。
铁屑内电解法是多种机理协同作用的结果,包括Fe2+、新生态氢的还原作用、Fe(OH)2的混凝作用、活性炭的导电、吸附作用并提供微生物滋生场所、原电池微弱电流刺激微生物代谢及有机物降解。
化学氧化法是利用臭氧、H2O2、氯及其含氧化合物等氧化剂将有机废染物直接氧化的处理方法。以臭氧氧化法应用较多,臭氧氧化法对许多种难降解废水都能有效处理。化学氧化法包括臭氧氧化法、芬顿试剂氧化法、湿式空气氧化法、超临界水氧化法、焚烧法、电化学法、光化学氧化法等。近年来,高级氧化工艺(Advanced Oxidation Processes,AOPs)因其下述特点而逐渐得到研究者的重视: (1)产生氧化能力极强的轻基自由基(OH),能较快速、彻底的降解有机废染物直至完全矿化,无二次废染;(2)工艺灵活,既可单独处理,又可以与处理工艺匹配; (3)作为一种物理-化学处理过程,极易控制以满足不同处理需要。在各种高级氧化工艺中目前尤以电化学氧化法、光化学氧化法成为研究的热点。
电化学氧化法是在电解槽中,废水中的有机废染物在电极上由于发生氧化还原反应而去除,废水中废染物在电解槽的阳极失去电子被氧化外,水中的C1-,OH-等也可在阳极放电而生成Cl2和氧O2而间接地氧化破坏废染物。
焚烧法是将含有高浓度有机物的废水在高温下用空气进行氧化分解,使有机物生成水、二氧化碳等无害物质而排入大气的方法。该法适用于一些浓度高、含有大量的无机盐物质和生物难降解物质,并且废染物没有回收价值而热值较高的废水,如化工、医药厂的有机废液。
物理化学处理技术是指废水中的废染物在处理过程中通过相转移的变化而达到去除目的的处理技术,常用的单元操作有离子交换法、萃取、吸附法、膜技术等。
在物理化学法中,应用最多的是吸附法。吸附是利用具有吸附能力的多孔性固体物质将废水中微量溶解性有机物吸附和浓集于其表面,达到净化的过程。吸附作用类型有物理吸附、化学吸附、分子吸附、离子吸附等。水处理中吸附过程往往是几种吸附作用的综合结果。常用的吸附剂有可再生吸附剂(如活性炭、离子交换纤维等)和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰)及天然废料(木屑、铁屑)等。
蒸馏、蒸发法根据废液中各物质沸点的不同,用来回收废水废液中的有用物质。而浓缩液可作为燃料、饲料、肥料,或者进行下一步处理。
膜科学技术是一门新兴的高分离、浓缩、提纯、净化技术。分离膜是一种特殊的、具有选择性透过功能的薄层物质,它能使流体内的一种或几种物质透过,而物质不透过,从而起到浓缩和分离纯化的作用。目前研究用于废水处理的主要是压力推动膜分离技术,包括反渗透(RO)、超滤(UF)、纳滤(NF)等。反渗透是以压力推动为动力的膜分离技术,压力差约为2~10 MPa,上世纪70年代美国的J.J.Porer和C.A.Brando等人就开始将膜分离技术应用于印染废水的处理,采用反渗透法对18种染料的回收和再利用进行了试验,使用内压管式酷酸纤维膜、中空纤维聚酰胺膜、卷式醋酸纤维膜以及外压管式Zr(IV)氧化物-PAA动态膜,分离效果良好,色度去除率大于99 %,COD去除率均在92 %以上,透过水可重新使用。超滤是膜分离技术中应用最为广泛的膜过程之一,在我国则为生产与应用最广泛的膜品种。80年代末问世的介于超滤与反渗透之间的一种新型膜分离技术,其截留分子量在200~2 000的范围内,孔径为几纳米,因此称为纳滤。由于纳滤膜表面有一层均匀的超薄脱盐层,它比反渗透膜要疏松得多,且其操作压力比反渗透低,因此,纳滤又称为疏松型反渗透或低压反渗透。膜分离法处理是一种新型分离技术,具有分离效率高、能耗低、工艺简单、操作方便、过程易控制、无废染等优点。但由于该技术需要专用设备,投资高,且膜易结垢堵塞,所以目前还未能推广。
目前生物处理法在化工、医药有机废水处理中应用最广,并在应用中不断改进完善,但仍然存在处理构筑基建投资和占地大、管理复杂等问题。
生物处理法是利用微生物的生物化学作用降解有机物,这种方法具有技术比较成熟,运行较稳定等优点。
1)活性废泥法。目前作为活性废泥法主要运行方式有传统活性废泥法、完全混合废泥法、阶段曝气活性废泥法、吸附―再生活性废泥法、延时曝气活性废泥法、高负荷性废泥法、纯氧曝气活性废泥法、氧化沟、AB法工艺(吸附―生物降解)、SBR法等。向曝气池内或进水中投加铁盐的方法,被称为生物铁法。
2)生物膜法。生物膜法是与活性废泥法并列的另一种好氧生物处理法,微生物生长在面的粘膜中。它包括生物滤池、生物转盘、生物接触氧化法、生物流化床,以生物接触氧化法应用最多。
3)复合式生物处理系统。复合式生物处理系统的研究在国外已有近20年的历史。复合生物处理系统中同时存在着附着相和悬浮相微生物,在任何时候都有一些游离的菌体附着在载体表面,同时又有一些生物膜脱离载体表面,而形成悬浮废泥,当这一过程达到平衡时,反应器中的载体表面就形成稳定状态的生物膜,这层生物膜与液相中的悬浮废泥共同发挥作用,各自发挥自己的降解优势,同时又在纵横两个方向上相互关联。
亦称厌氧消化,是在厌氧条件下由多种微生物(厌氧细菌和一些兼性细菌)共同作用,使有机物分解并生成CH4和CO2的过程,一般包括水解、发酵、产氢产乙酸、产甲烷等四个阶段。
大多数有机废水往往是厌氧后面接好氧处理单元。另外,若废水中含氮较多时,A/O法(缺氧―好氧)应用较为广泛;若废水中含磷较多时,A/O工艺(厌氧―好氧)中不设内循环时也能起到除磷作用。A2/O(厌氧―缺氧―好氧)法主要应用于废水同步脱氮除磷。兼氧水解―好氧生物处理工艺,是从厌氧-好氧生物处理发展而来的,用厌氧发酵过程中水解酸化阶段,而放弃了停留时间长的甲烷发酵阶段,不产气。该工艺在较难处理的化工、医药废水应用越来越多。
通过向废水中投加磁种和混凝剂,利用磁种的剩磁,在混凝剂同时作用下,使废水中的颗粒物相互吸引而聚结长大,加速悬浮物的分离,然后用磁分离器除去有机废染物。
通过控制的频率和饱和气体,降解分离废水中有机物质。处理废水是基于能在溶液中产生局部高温、高压、高剪切力,诱使水分子和染料分子裂解成自由基,引发各种反应,促进絮凝。清华大学陶媛、胡棋昊、王黎明等针对实际印染废水高浓度、高毒性、高COD值的特点,采用探头式功率超声发生器和自制平板超声发生器降解多种高浓度染料废水,结果表明,降低超声辐射声强及增大辐射有效面积可降解染料并增大处理废水的体积。但是单独使用气振法降解结构复杂的染料废水仍难以达到工业应用水平。
当高能粒子束轰击水溶液时,水分子发生激发和电离,生成离子、激发分子、次级电子,这些辐射产物在向周围介质扩散前会相互作用产生反应能力极强的物质HO、H2O2、HO2与有机物质发生作用而使其分解。早在80年代Getoff
等用电离辐射技术(γ-辐射、X射线、电子束)对废水中的多种烷类物质(含染料)进行了降解研究,但因其产生高能粒子的装置昂贵,技术要求高,能耗较大,难以投入实际运行。
利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合BOB半岛官网,所用光主要为紫外光,包括UV-O2,UV-H2O2等工艺,可以用于处理医药化工废水中的CHCl3,CCl4、多氯联苯等难降解物质。
除了上述的最新的处理方法外,还有超临界法、高效菌、酶生物处理技术、生物吸附降解技术在一定的范围内得到了应用和发展。
我国目前一般的工业有机废水大多通过组合传统工艺进行处理,但对有毒难生化降解的有机废水如印染、制药、农药等废水的处理,由于技术和经济之类的原因至今仍缺乏有效而经济的治理对策。研究开发费用低且无二次废染的新型废水处理技术,成为环保领域内一个亟待解决的重要课题。高级氧化工艺逐渐受到人们的青睐,这些氧化技术,如前面提到的光催化氧化、电催化氧化、超临界氧化、湿式氧化和低温等离子体化学法等新技术在难降解有机工业废水处理方面的研究十分活跃,有些已进入工业试验阶段。尤其电催化高级氧化技术、光催化氧化以及两者的协同效应的研究正成为该领域研究的热点,代表废水处理技术的研究方向,有望在不久的将来在技术上有所突破,并在工业中得到应用。
[7]郭明远,杨牛珍.纳滤膜分离活性染料溶液的研究[J].水处理技术,1996(2):97-99.
[8]彭继伟.改良厌氧-生物接触氧化处理纺织印染废水[J].工业水处理,2002,22(7):46-48.
[9]陶媛,胡棋昊,王黎明,等.超声技术降解染料废水的实验研究[J].高电压技术,2002,28(120):47-56.
目前用于印染废水处理中的预处理工艺主要有:格栅、筛网、沉砂、调节水量及水质、降温等工艺组成。根据不同的印染废水水质采取不同的预处理手段,去除一部分污染物,改善废水水质提高后续处理单元的处理效果。
由于印染废水中含有大量的布毛、线头、纤维屑等细小的悬浮物,如梭织布的退煮漂废水、牛仔漂洗废水等均含有大量的细小纤维悬浮物,混合印染废水中往往还含有许多的比较大悬浮物质,这些物质会对水泵造成损害对主体处理造成影响,因此在进入泵及主体构筑物之前对其进行拦截,设置格栅拦截较大悬浮物,设置筛网拦截细小悬浮物。
格栅一般用在水量大且水质比较复杂的综合印染废水处理中,如万吨级以上的纺织印染工业园区的废水处理中,因为此种废水水量大,且悬浮物颗粒较大,设置格栅能够有效拦截较大的悬浮物,处理能力高,不易堵塞,针对印染废水的特点我公司在工程实践中不设置粗格栅,一般只选用细格栅,栅缝间隙通常采用1-5mm.格栅机主要有回转式机械格栅机、网式转链格栅机、固定式格栅机、反切式旋转细格栅机等,我公司常用的主要有反切式旋转细格栅机、网式转链格栅机、固定式格栅机等。
筛网通常应用在水量相对较小、废水中含有大量的细小悬浮物如:布毛、线头等,同时还可以去除大颗粒的浮石渣,对悬浮物及大颗粒物质的去除率可达到90%以上。工程实践表明,筛网间隙一般为30-60目,安装形式采用固定式安装,安装角度为30-45°,安装角度不易过大,过大则造成过水负荷降低,使处理能力降低同时也增加了部分投资,过小则易造成筛网堵塞,加大了清渣难度,影响处理效果。
印染废水中的漂洗废水(如牛仔漂洗废水)中含有大量的泥砂物质如浮石渣,如果不对其废水进行沉砂处理,往往会造成后续构筑物的大量积砂,减少了后续处理构筑物的池溶,降低了水力停留时间,使水力特性不能满足设计要求,严重的影响了废水的处理效果,尤其会对水泵造成磨损,降低水泵的使用寿命,增加运行成本。因此在某些印染废水处理中设置沉砂处理是非常有必要的,沉砂池一般可分为:平流沉砂池、曝气沉砂池、旋流沉砂池。我公司应用最多的是平流沉砂池,主要是由于牛仔漂洗废水中的浮石渣表面不含大量的有机物,因此没有必要采用曝气沉池或旋流沉砂池,采用平流沉砂池操作简单,运行管理方便。
在沉砂池设计的过程中,对漂洗废水的水质特性进行了充分分析,考虑到泥砂颗粒细小的特点,沉砂池可分成二—— 沉砂,这样能够使泥砂颗粒按级数进行逐步沉降,最终达到去除泥砂的目的,总停留可设计为1.5个小时,排砂方式有重力排砂和机械排砂,可根据工程的实际情况确定排砂方式。
由于纺织印染工业其特有的生产过程,造成了废水排放的间断性和多变性,使排出的废水的水质及水量在一日内,甚至每班内都有很大的变化,因此要求对废水进行进行调节,均衡水质,使其能够均匀进入后续处理单元,提高处理效果。印染废水的调节主要分为:水量调节和水质调节。
废水处理设备及构筑物都是按一定的水量标准设计的,要求均匀进水,特别对生物处理系统更为重要,为了保证后续处理系统的正常运行,在废水进入处理系统之前,预先调节水量,使处理系统满足设计要求。
印染废水中有机污染物高、色度深、碱性和ph值变化大、水质变化剧烈,因此对废水水质进行调节是非常必要的,尤其是废水的ph值。在废水进入生物处理之前,将ph调整为6-10,以便满足废水生物处理的要求。
实践证明,根据印染废水的水量、水质不同,调节池的停留时间也各不相同,当处理水量比较小时,停留时间可选大些,当处理水量比较大时,停留时间可根据具体情况选小些,一般为4-10个小时。
对于某些印染废水,为了使调节池有一定的去除效率及增加废水的均匀性,特别是当废水中含有比较多的还原性物质时,可考虑在调节池内增加预曝气装置,可有效改善废水的水质特性。如牛仔布经线的浆染废水中含有大量的硫化物(300-500mg/l),对废水进行预曝气可使部分s-氧化。
印染废水的水温大多比较高(浆纱印染废水除外),如针织布的漂染、针织线℃,毛绒、毛线℃,梭织布的退煮废水水温为40-50℃等,当水温过高时,会导致废水生化处理系统无法正常运行,直接影响污水达标排放,因此必须考虑对高温废水进行降温处理,然后,再使降温后的废水进入生化处理系统,以便达到生化处理的水温要求,保证整个处理系统的正常运行,同时,废水中的热能也是一种可再利用的资源。
对废水进行降温的方法通常采用热交换的方式进行降温冷却,不同温度的工艺废水经混合后,进入热交换器进行降温处理,一般将水温控制在42℃以下,利于生物的生长,提高处理效果。
随着我国工业的发展,重金属废水排放与处理问题越来越严重。废水中的重金属来源非常多,例如,在矿山开采过程中的排水、金属冶炼过程中的除尘排水和酸洗水、化工企业的生污水等,都会产生重金属废水。在这些重金属废水中,金属的离子含量和种类并不相同,彼此之间差别比较大。这些金属离子在处理过程中只能够被采用物理方法进行转移或者采用化学方法进行稀释,但是无法把它除去或者消失。所以这样的重金属废水一方面不经处理排放会对环境造成严重的污染,另一方面,重金属离子的流失也是一种资源的浪费。所以对于重金属废水进行处理是必须要进行的。
在目前对重金属废水的处理方法中有很多方式,例如,可以采用化学的方法,或者离子交换的方法、水电解法和吸附法和反渗透技术法等。由于在重金属废水中存在大量游离的重金属离子,而且这些重金属离子的成分比较复杂,所以在实际处理过程中,采用反渗透技术法是比较有效的一种处理方式。
反渗透技术主要是通过外界的作用力使废水中的溶剂透过半透膜进行过滤从而把金属离子隔离在另一侧的技术处理方式。在实施这一技术的过程中,有2个条件必须满足,一个是外界的作用力必须远远大于溶液中的渗透压;另一条件是必须要有一种透水性和选择性质量都非常高的半透膜。一般对于反渗透技术中的半透膜要求其表面的微孔尺寸不能大于1nm,这种尺寸才能保证在渗透过程中,把大部分的离子都除去。反渗透技术主要是根据渗透截留机理对金属离子进行筛分和经典排斥的,因此在采用反渗透技术时,还要考虑到不同离子的价态[2]。
在重金属废水处理中引入反渗透技术最早开始于20世纪70年代,刚开始只是运用这种技术对电镀水进行渗透处理,后来由于应用效果比较理想才扩展到了重金属废水领域。采用反渗透技术对重金属废水进行处理不需要添加任何药剂,也不需要其他辅助技术,所以采用反渗透技术的设备消耗相比较与其他的技术处理方式更低也更有效。
在企业产生的电镀废水和金属漂洗水中含有大量的重金属离子,其中铬、镉、铅、镍的含量都比较高,此外还含有大量的氰化物和氯化物。对于电镀水的处理时反渗透技术应用的第一个领域。在对电镀废水的处理过程中,主要是通过局部渗透或者脱盐的方式,将废水中游离的离子进行回收。例如,电镀过程中电镀镍会产生大量的含有镍离子的镍废水,我们都知道镍和汞都是含有剧毒的,对危害极大,所以就必须要对镍废水进行处理,而对镍的回收利用从经济学的角度上来看也更实用。从20世纪70年始,反渗透技术开始在电镀废水的处理中得到应用,发展到现在已形成了一套比较完善的技术理论。在技术处理过程中还可以通过和纳滤组合工艺技术配套使用从而对回收的镍进行漂洗和再利用。
重金属的废水涵盖范围除了电镀废水意外,还包括很多,例如,冶炼行业废水、采矿行业的废水以及化工农药行业产生的废水等。在这些重金属废水中,含有大量的铜、铅、镍、硌、银、锌等金属离子。对于这些离子的去除,一方面可以大大改善环境方面的保护工作,降低对我们生活环境的危害;另一方面又可以实现重金属的回收再利用,从而提高企业的经济效益。通过相关研究发现,通过反渗透技术对于这些重金属废水中的金属离子的去除率可以达到95.89%。这说明对于重金属废水的处理,反渗透技术是具有非常高的效率的。黄安抚等人研究的利用反渗透技术对紫金山矿的重金属废水处理试验就是一个非常好的例子。他们通过运用反渗透技术对重金属废水处理后发现,铜离子的含量下降到了
随着反渗透技术在重金属废水处理中的应用,我们还必需要考虑的一个问题是反渗透技术的成本问题。反渗透技术中非常关键的一个环节就是反渗透膜的选择,渗透膜的选择对于反渗透技术的运用有非常关键的影响作用。在反渗透膜的种类上,现在市场上已经研发出了几百种,而且价格也高低不等。不同的渗透膜在废水处理过程中的污染去除能力,以及自身抗污染能力都是不一样的。所以尽管对于重金属废水的反渗透技术处理效果非常令人满意,但必须认识到的一点是它的价格也是比较昂贵的。尤其是随着近年来,手段和技术方面的提高,使得渗透膜的技术也有了较高水平的发展,而随着这种发展,其应用成本总体是在不断下降的。
在对重金属废水的处理过程中,合理的运用预处理的方法可以提高渗透膜的使用寿命,从而降低因更换渗透膜而带来的成本。在反渗透技术处理过程中,非常关键的一个技术要点是要保证处理时进水的水质必须要符合要求,否则很快会造成渗透膜的污染,这会严重影响渗透技术的处理效果,并对渗透膜的使用寿命也造成严重影响。所以在处理重金属废水过程中,合理进行预处理可以有效提高渗透膜的渗透率,从而提高对重金属废水的处理效果。
反渗透技术在重金属废水的处理过程中能够起到比较好的处理结果,局部的金属离子清除率可以达到98%以上[4],这对于净化重金属废水,实现清洁生产有非常重要的作用。同时重金属的回收也提高了资源的利用率,创造了巨大的经济效益。随着现代科学技术的发展与进步,反渗透技术也将不断得到发展与创新,这将更广泛的应用于重金属废水的处理过程中,实现更高效的处理效果,创造更大的经济价值。
[1]吴昊,张盼月,蒋剑虹,等.反渗透技术在重金属废水处理与回用中的应用[J].工业水处理,2007(6):6-9.
[2]曾杰,吉希希,任会,等.膜技术处理重金属废水[J].湖南有色金属,2011(1):43-47.
工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。
工业废水分类通常有以下三种:第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。处理的基本原则:
(一)优先选用无毒生产工艺代替或改革落后生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水的产生。
(二)在使用有毒原料以及产生有毒中间产物和产品过程中,应严格操作、监督,消除滴漏,减少流失,尽可能采用合理流程和设备。
(三)含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与废水分流,以便处理和回收有用物质。
(四)流量较大而污染较轻的废水,应经适当处理循环使用,不宜排入下水道,以免增加城市下水道和城市污水处理负荷。
(五)类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理。
(六)一些可以生物降解的有毒废水,如酚、氰废水,应先经处理后,按允许排放标准排入城市下水道,再进一步生化处理。
(七)含有难以生物降解的有毒废水,应单独处理,不应排入城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。
农药品种繁多,农药废水水质复杂。其主要特点是:(1)污染物浓度较高,化学需氧量(COD)可达每升数万mg;(2)毒性大,废水中除含有农药和中间体外,还含有酚、砷、汞等有毒物质以及许多生物难以降解的物质;(3)有恶臭,对人的呼吸道和粘膜有刺激性;(4)水质、水量不稳定。因此,农药废水对环境的污染非常严重。农药废水处理的目的是降低农药生产废水中污染物浓度,提高回收利用率,力求达到无害化。农药废水的处理方法有活性炭吸附法、湿式氧化法、溶剂萃取法、蒸馏法和活性污泥法等。但是,研制高效、低毒、低残留的新农药,这是农药发展方向。一些国家已禁止生产六六六等有机氯、有机汞农药,积极研究和使用微生物农药,这是一条从根本上防止农药废水污染环境的新途径。
食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。废水中主要污染物有(1)漂浮在废水中固体物质,如菜叶、果皮、碎肉、禽羽等;(2)悬浮在废水中的物质有油脂、蛋白质、淀粉、胶体物质等;(3)溶解在废水中的酸、碱、盐、糖类等;(4)原料夹带的泥砂及其他有机物等;(5)致病菌毒等。食品工业废水的特点是有机物质和悬浮物含量高,易,一般无大的毒性。其危害主要是使水体富营养化,以致引起水生动物和鱼类死亡,促使水底沉积的有机物产生臭味,恶化水质,污染环境。
食品工业废水处理除按水质特点进行适当预处理外,一般均宜采用生物处理。如对出水水质要求很高或因废水中有机物含量很高,可采用两级曝气池或两级生物滤池,或多级生物转盘或联合使用两种生物处理装置,也可采用厌氧—需氧串联的生物处理系统。
造纸废水主要来自造纸工业生产中的制浆和抄纸两个生产过程。制浆是把植物原料中的纤维分离出来,制成浆料,再经漂白;抄纸是把浆料稀释、成型、压榨、烘干,制成纸张。这两项工艺都排出大量废水。制浆产生的废水,污染最为严重。洗浆时排出废水呈黑褐色,称为黑水,黑水中污染物浓度很高,BOD高达5—40g/L,含有大量纤维、无机盐和色素。漂白工序排出的废水也含有大量的酸碱物质。抄纸机排出的废水,称为白水,其中含有大量纤维和在生产过程中添加的填料和胶料。造纸工业废水的处理应着重于提高循环用水率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。例如浮选法可回收白水中纤维性固体物质,回收率可达95,澄清水可回用;燃烧法可回收黑水中氢氧化纳、硫化钠、硫酸钠以及同有机物结合的其他钠盐。中和法调节废水pH值;混凝沉淀或浮选法可去除废水中悬浮固体;化学沉淀法可脱色;生物处理法可去除BOD,对牛皮纸废水较有效;湿式氧化法处理亚硫酸纸浆废水较为成功。此外,国内外也有采用反渗透、超过滤、电渗析等处理方法。
印染工业用水量大,通常每印染加工1t纺织品耗水100-200t,其中80%-90%以印染废水排出。常用的治理方法有回收利用和无害化处理。回收利用:(1)废水可按水质特点分别回收利用,如漂白煮炼废水和染色印花废水的分流,前者可以对流洗涤半岛BOB。一水多用,减少排放量;(2)碱液回收利用,通常采用蒸发法回收,如碱液量大,可用三效蒸发回收,碱液量小,可用薄膜蒸发回收;(3)染料回收,如士林染料可酸化成为隐巴酸,呈胶体微粒,悬浮于残液中,经沉淀过滤后回收利用。
无害化处理可分:(1)物理处理法有沉淀法和吸附法等。沉淀法主要去除废水中悬浮物;吸附法主要是去除废水中溶解的污染物和脱色。(2)化学处理法有中和法、混凝法和氧化法等。中和法在于调节废水中的酸碱度,还可降低废水的色度;混凝法在于去除废水中分散染料和胶体物质;氧化法在于氧化废水中还原性物质,使硫化染料和还原染料沉淀下来。(3)生物处理法有活性污泥、生物转盘、生物转筒和生物接触氧化法等。为了提高出水水质,达到排放标准或回收要求往往需要采用几种方法联合处理。
冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有冷却水、酸洗废水、洗涤废水(除尘、煤气或烟气)、冲渣废水、炼焦废水以及由生产中凝结、分离或溢出的废水等。冶金废水治理发展的趋势:(1)发展和采用不用水或少用水及无污染或少污染的新工艺、新技术,如用干法熄焦,炼焦煤预热,直接从焦炉煤气脱硫脱氰等;(2)发展综合利用技术,如从废水废气中回收有用物质和热能,减少物料燃料流失,(3)根据不同水质要求,综合平衡,串流使用,同时改进水质稳定措施,不断提高水的循环利用率;(4)发展适合冶金废水特点的新的处理工艺和技术,如用磁法处理钢铁废水具有效率高,占地少,操作管理方便等优点。
化工废水主要是在工业生产过程中所排放的工业废水,分为有机化工废水和无机化工废水两大类。化工废水多种多样,且多数有剧毒,不容易净化,在生物体内有一定的积累作用,在水体中具有明显的耗氧性质,易使水质恶化,因此化工净水问题是大势所趋。
化工废水分为无机化工废水和有机化工废水两大类。无机化工废水包括从无机矿物制取酸、碱、盐类等基本化工原料的工业废水,它们主要是生产中的冷却用水,废水中含酸、碱、盐类和悬浮物,有的还含硫化物或其他有毒物质。有机化工废水成分多样化BOB半岛官网,包括一些合成材料、人造纤维、油漆、涂料、药品制剂生产等过程中排放的废水,一般都有强烈耗氧性,毒性较强,因为多是人工合成的有机化合物,因此污染性强且不易分解。
(1)水质成分多数比较复杂,副产物较多,反应原料常为溶剂类物质或环状结构的化合物,在一定程度上增加了废水处理的难度。
(2)废水中污染物含量高,是因为生产中原料的不完全反应和使用的溶剂介质排入了废水体系造成的。
(3)化工废水中有许多对微生物有毒有害的有机污染物。如:卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等。
物理处理法一般用于去除废水中的漂浮物、悬浮固体、砂粒和油类等物质。操作成本较低,方便管理,处理效果也比较稳定。常用的处理方法有过滤法、沉淀法和气浮法等。但是这些方法对可溶性强的废水成分都不易去除,所以物理处理法一般用于其他处理方法的预处理。
(2)沉淀法:利用化工废水中悬浮颗粒的可沉淀性,在重力作用下自然沉淀,以达到固液分离的效果。
化学处理法一般是通过化学反应去除废水中的有机物和无机物杂质即溶解物质或胶体物质。操作相对比较麻烦,需要一定的经济支援,常用的处理方法有:混凝法、氧化还原法、电化学法等。
主要作用对象是废水中的微小悬浮物与胶体物质,通过添加化学药剂产生的凝聚作用去除形成沉淀的胶体物质,混凝法不但可以去除废水中粒径极为细小的悬浮颗粒,还能有效的去除废水色度、微生物以及部分有机物等,但是受水的温度、pH值、水量以及水质等条件影响大,对可溶性好的物质去除率低。
用氧化剂对废水中的有机物进行氧化以达到去除效果(如图1所示)。废水经过氧化还原,可使其中所含的有机和无机的有毒物质反应成毒性较小甚至无毒的物质,从而达到净化废水的目的。
③毒性:当空气中O3的浓度达到6.25×10-6 mol/L(0.3 mg/m3)时可以闻到臭味,就会对人的眼睛、鼻子、喉及呼吸道产生一定的刺激性;当浓度达到(6.25~62.5)×10-5 mol/L(3~30 mg/m3)时就会令人出现头痛、恶心及局部呼吸器官症状;当浓度达到3.125×10-4~1.25×10-3 mol/L(15~60 mg/m3)时则对危害相对较大;O3的毒性还与接触的时间长短有关。
④氧化性:O3氧化能力极强,它的氧化还原电位仅次于氟,利用这一特性它可以与无机物(亚铁、Mn2+、硫化物、硫氰化物、氰化物、氯等)发生氧化还原反应半岛BOB,也可以将烯烃、炔烃、芳香烃等有机物质氧化成醛类或有机酸。
臭氧氧化能力极强,而且没有二次污染隐患,但是具有较强的腐蚀性,贮存设备昂贵。因此臭氧氧化法与氯氧化法一样能耗相对较大,且成本比较高,不适用于处理量大和浓度较低的化工废水。
污染物在电极上发生氧化还原反应被去除,污染物在电解槽的阳极被氧化外,废水中的氯离子、氢氧根离子等也可在阳极放电而生成氯、氧由此间接地破坏污染物。但是通常在实际操作中为了强化阳极的氧化作用,减少电解槽的内阻,会在废水电解槽中加一些氯化钠,使阳极生成氯和次氯酸根,对废水中的无机物、有机物都有较强的氧化作用。
物化处理法是指通过物理化学反应,去除或分离废水中细小的悬浮物及溶解有机物。常用的有:吸附法、离子交换法、萃取法和膜分离法等,但是这些方法都只适用于某一类物质的分离,选择性强,成本偏高,且容易造成二次污染。
(1)吸附法是利用多孔性固体物质作为吸附剂,以吸附剂的表面吸附废水中的有机污染物的方法,活性炭是最常用的吸附材料之一,对分子量在400左右的染料分子脱色效果最佳,对分子量小的染料吸附性也比较好,而对疏水性染料脱色效果较差,再加上活性炭再生能力差,费用高,所以很难广泛使用。
(2)离子交换法是为了去除残存在废水中的细小悬浮物及溶解静态有机污染物,它是一种借助离子交换剂进行离子交换反应去除有害离子的方法,在水的软化和有机废水处理中得到了广泛应用。
(3)萃取法采用不能与水相溶却能溶解污染物的萃取剂,与废水充分接触,利用污染物在水和溶剂中不同的溶解度、分配比例,达到分离、提取污染物,净化废水的目的。
(4)膜分离法是利用半渗透膜进行分子过滤处理废水的方法,利用“半渗透膜”的性质,进行过滤分离。水能通过这种膜,但水中的悬浮物及溶质通不过,所以被称为半渗透膜,利用它可以除去溶解在水中的有机物和胶状物质。
生化处理法是指利用自然界存生的各种微生物的新城代谢功能将废水中的有机物分化成无害物质,达到净化废水作用。此方法成本较低,操作简单,但是对营养物质、pH值、温度等条件有一定要求,若单独采用生化法处理化工废水工作难度非常大,常用的方法有:活性污泥法、生物膜法和厌氧生化法等。
(1)活性污泥是利用悬浮生长的微生物絮体处理废水的方法,它由好氧微生物及其代谢吸附的有机物、无机物组成,与废水充分接触可以降解有机污染物。
(2)生物膜法是废水与着于载体表面的好氧微生物充分接触时通过生物膜吸附和氧化废水中的有机物净化废水的过程。
(3)厌氧生化法是在无氧条件下利用厌氧或兼氧生物将废水中的有机物分化为甲烷和二氧化碳的过程。主要由水解产酸细菌、产氢产乙酸细菌和产甲烷细菌联合作用完成BOB半岛,是一个复杂的生化过程。
每一次惊心动魄的污染事件引起的骚动都向政府敲响了警钟,尤其是水污染,保护水资源、保护环境势在必行!
[1] 冯粒克,喻学敏,白永刚,等.化工园区混合化工废水处理技术研究[J].污染防治技术,2010(4):69-73.
[2] 彭松,蒋克彬,陈红艳.化工废水治理措施综述[J].江苏环境科技,2008(S1):122-124.
[3] 孙璐,张继义.混凝-活性炭吸附对化工废水深度处理效果的研究[J].北方环境,2010(1):55-58.
抗生素制药废水是制药工业废水的主要类别之一,该废水主要来包括生产过程中原料提炼后的废发酵液、洗涤废水和冷却水。发酵废水一般具有有机污染物浓度高、酸碱性和温度变化大和药物残留等特点,且由于抗生素取得率低,废水中含有大量残余抗生素,使得发酵废水具有明显的微生物抑制作用;悬浮物浓度高是洗涤废水的普遍特征;冷却水一般污染物含量不高,但往往水量较大且会受到季节影响[1]。
基于废水处理运行成本的考虑,生化法成为废水处理过程中的主要环节。但抗生素在进行生化处理时往往需要进行预处理或后续处理,这些过程就需要通过物化法来完成[2]。
好氧法对有机污染物的去除较彻底,在各类废水的生化处理中必不可少,但由于抗生素废水有机物浓度高、有生物毒性,采用单一好氧工艺难以达到预期效果,必须对废水进行有效的预处理,而后好氧法的显著功能才能得以发挥。目前用于处理制抗生素水比较成熟的好氧生化法有接触氧化、氧化沟、SBR及其变形工艺及膜生物反应器。
接触氧化法具有较高的处理负荷,无需搅拌设备、不存在污泥膨胀问题。但是,在实际运行过程中可能存在填料流失和容积利用率偏低等问题;在处理抗生素废水时,如果进水浓度高,池内还会出现大量泡沫,需采取防治和应对措施。
SBR的水力流态成完全混合态,其反应阶段在时间分布上又有推流态的特征,其灵活的运行方式和稳定的处理效果一直倍受青睐,在抗生素废水处理中亦得到了广泛的应用。SBR虽然无需沉淀池,但用于高浓度废水处理时其运行周期较长,使其无法与反应池的组数和进水时间达成统一,因此往往需要增加水力调节容积,且在反应池前后均需考虑此问题。另外,SBR在处理高浓度废水时还存在需要维持较高的污泥浓度等问题。
MBR工艺无需沉淀池、且固液分离效果显著,其超高的污泥浓度显著提高了提高了有机物的去除效率,但同时也带来了污泥产率高的问题。
在废水处理中厌氧法一般与好氧法联合使用,厌氧法因其有助于提高废水可生化性,且适用于高浓度有机废水等优点而得到广泛应用。但对于抗生素废水而言,废水中残留的毒性物质严重抑制了厌氧微生物的生物活性,明显降低了厌氧反应池的有机物去除率,自身无法达到去除率的要求目标,严重时还会导致生化系统的失效,因此抗生素废水不宜采用厌氧法进行处理[3]。
水解酸化兼性菌同厌氧法专性产甲烷菌相比对pH值、氧化还原电位、温度等均有更广的适用范围,同时对多种抗生素有的生物毒性有较强的抵抗能力,因此水解酸化法在抗生素废水处理中体现了广泛的适应性,使得水解酸化法得到推广。水解酸化同厌氧法一样,都必须同好氧法结合形成“水解酸化-好氧”组合工艺,水解酸化的作用是减弱或消除抗生素废水的生物毒性、并提高废水的可生化性,同时对有机物拥有15%~20%的去除率。这种组合工艺主要有水解酸化-SBR组合工艺、水解酸化-接触氧化组合工艺等。
生化法组合工艺运行的主要影响因素有:高浓度硫酸盐、高浓度氨氮、残余抗生素浓度BOB半岛、pH值、废水可生化性等[4]。
高浓度硫酸盐引发的基质竞争作用和硫化物产生的毒害作用都有可能对系统产生影响;水解酸化过程基本不能改变氨氮浓度,原水中的高浓度氨氮进入好氧过程后对好氧系统微生物有明显的抑制作用,会导致微生物休眠或死亡,需要采取紧急措施来恢复系统,并对原水的高浓度氨氮进行预处理;抗生素废水的可生化性一般不低,但由于废水中的残余抗生素严重的抑制了微生物的活性,只要水解酸化能够解除这种抑制作用或生物毒性,组合工艺即能更有效的发挥去除作用;水解酸化要求废水呈弱碱性为宜,好氧系统要求废水呈近中性。
抗生素废水成分复杂,采用水解酸化法进行预处理亦会受到如前述的水质影响时,此时需考虑对废水进行物化法预处理。处理抗生素废水时常见的物化法主要有混凝、气浮、吸附等,物化法还用于生化法的后续处理。采用物化法对抗生素废水进行预处理时,在设计与运行均合理的情况下往往处理效果显著,但物化法一方面会使处理系统复杂化,带来管理方面的负担,另一方面则有可能大幅度增加运行费用[5]。
混凝一般都作为预处理工艺,旨在通过去除废水中的悬浮颗粒和胶体物质来达到降低有机物和悬浮物的目的。通常混凝处理后,不但可以降低废水中COD和悬浮物浓度,还可以降低废水中的溶媒物质和菌丝体的含量,减少溶媒物质对微生物的抑制和毒害作用,从而达到预处理的目的。另外,有些混凝剂还能降低废水中的有机硫化物。但是其污泥处理处置环节却是一个不容忽视的难题。
在抗生素工业废水处理中,如庆大霉素、土霉素、麦迪霉素等废水的处理,常采用化学气浮法。当废水中的悬浮物及胶体含量较多且密度较低或混凝后絮体密度较低时,可以采用气浮对该抗生素制药废水进行预处理。气浮具有投资少、能耗低、工艺简单、维修方便等优点。
吸附一般用于抗生素制药废水的预处理中,另外,当混凝沉淀或气浮后尚不能达标排放时,采用物理吸附往往会达到满意的效果。
某些抗生素废水的氨氮浓度极高,这将直接影响生化处理效果,甚至导致微生物中毒的现象,此时可以考虑采用吹脱法来降低氨氮浓度。
抗生素废水有机物浓度高且废水的残余抗生素对微生物有明显的抑制作用。采用水解酸化-好氧组合工艺并根据具体的水质情况辅以物化法可以得到稳定的处理效果。
13988888888